

Cobb County- Marietta Water Authority

Drinking Water

All Water Tests - 2023

updated-3/25/2024

Other Parameters	Quarles WTP mg/L average	Wyckoff WTP mg/L average		Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Parameter in Drinking Water	Frequency of Test
Alkalinity	22.7	27.1	No EPA Limit	No EPA Limit	n/a	Natural from rocks and soils; addition from drinking water treatment	Hourly
Aluminum	Not detected	Not detected	No EPA Limit	0.05-0.2	yes	Natural dissolution from rocks; addition from drinking water treatment	Annually
Calcium	10.4	10.9	No EPA Limit	No EPA Limit	n/a	Natural dissolution from rocks	Biweekly
Hardness	32.2	34.5	No EPA Limit	No EPA Limit	n/a	Natural dissolution from rocks	Biweekly
Hardness, grains per gallon	1.88	2.02	No EPA Limit	No EPA Limit	n/a	Natural dissolution from rocks	Biweekly
Magnesium	Not tested	Not tested	No EPA Limit	No EPA Limit	n/a	Natural dissolution from rocks	As needed
Nickel	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leaching from pipes and fittings, power plant discharges	Annually
рН	7.8	7.8	No EPA Limit	6.5-8.5	yes	Natural sources; addition from drinking water treatment	Hourly
Zinc	Not detected	Not detected	No EPA Limit	5	yes	Power plant discharges	Annually
Chloride	13.54	9.05	No EPA Limit	250	yes	Deicing of roads; leachate from landfill; natural leaching from rocks; addition from drinking water treatment	Weekly
Sulfate	15.45	13.66	No EPA Limit	250	yes	Natural leaching from rocks; addition from drinking water treatment; industrial discharges	Weekly
Conductivity	134.5	120.9	No EPA Limit	No EPA Limit	n/a	Natural minerals dissolved in water; wastewater discharges; addition from drinking water treatment	Biweekly
Total Dissolved Solids	87.43	78.59	No EPA Limit	500	yes	Natural minerals dissolved in water; wastewater discharges; addition from drinking water treatment	Biweekly
Total Organic Carbon	1.2Filtered2.2Raw	1.7 Filtered 2.6 Raw	TT average removal ratio between Filtered and Raw	No EPA Limit	yes	Decaying natural organic matter (NOM); discharges of fertilizers, pesticides herbicides and industrial chemicals	Continuus Online Monitoring
Turbidity	0.06 NTU	0.05 NTU	TT = 1 NTU	No EPA Limit	VAS	Natural sediment- clay and silt; organic compounds; algae; microscopic	Hourby
Turbidity	100% meet standard	100% meet standard	TT = percentage of samples <0.3 NTU		yes	organisms	Hourly

standard standard	100% 111661	100% Ineer	samples <0.3 NTU		_	
	standard	standard				

Inorganic Chemicals	Quarles WTP mg/L	Wyckoff WTP mg/L	Maximum Limit MCL mg/L	Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Antimony	Not detected	Not detected	0.006	No EPA Limit	yes	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	Annually
Arsenic	Not detected	Not detected	0.010	No EPA Limit	yes	Erosion of natural deposits; runoff from orchards, runoff from glass and electronicsproduction wastes	Annually
Barium	Not detected	Not detected	2	No EPA Limit	yes	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	Annually
Beryllium	Not detected	Not detected	0.004	No EPA Limit	yes	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	Annually

Cadmium	Not detected	Not detected	0.005	No EPA Limit	yes	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	Annually
Chromium (Total)	Not detected	Not detected	0.1	No EPA Limit	yes	Discharge from steel and pulp mills; erosion of natural deposits	Annually
Fluoride	0.73	0.7	4.0	2.0	yes	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories	Annually and 3 times daily
Iron	Not detected	Not detected	No EPA Limit	0.3	yes	Erosion of natural deposits	Annually and 2 times daily
Manganese	Not detected	Not detected	No EPA Limit	0.05	yes	Erosion of natural deposits	Annually and 2 times daily
Mercury	Not detected	Not detected	0.002	No EPA Limit	yes	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	Annually
Nitrate/Nitrite	0.67	0.28	10	No EPA Limit	yes	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits	Annually
Potassium	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Erosion of natural deposits	Annually
Selenium	Not detected	Not detected	0.05	No EPA Limit	yes	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines	Annually
Thallium	Not detected	Not detected	0.002	No EPA Limit	yes	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	Annually

Disinfectants and Disinfection Byproducts at treatment plant	Quarles WTP mg/L Average	Wyckoff WTP mg/L Average		Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Chlorite	0.17	0.24	1.0	No EPA Limit	yes	Byproduct of drinking water disinfection	Daily
Chlorine Dioxide	0.1	0.02	0.8	No EPA Limit	yes	Byproduct of drinking water disinfection	Daily
Chlorate	0.40	0.35	No EPA Limit	No EPA Limit	n/a	Byproduct of drinking water disinfection; pesticide runoff; papermill discharges	Weekly
Chlorine as free chlorine residual	1.9	1.8	4.0	No EPA Limit	yes	Byproduct of drinking water disinfection	Continuus Online Monitoring

Disinfectants and Disinfection Byproducts in the Distribution System	. ,	ibution System g/L	Maximum Limit MCL mg/L	Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Chlorine as free chlorine residual ¹	1	.2	4.0	No EPA Limit	yes	Byproduct of drinking water disinfection	Daily
Chlorite ²	0.1	0.2	1.0	No EPA Limit	yes	Byproduct of drinking water disinfection	Monthly
Haloacetic Acids (HAA5) locational running annual average in	Site 503	Site 504	0.06	n/a	Voc	Byproduct of drinking water	Quartarly
distribution system ³	0.04	0.03	0.00	11/d	yes	disinfection	Quarterly
Total Trihalomethanes (TTHMs) locational running annual average in	Site 503	Site 504	0.08	n/a	Voc	Byproduct of drinking water	Quarterly
distribution system ³	0.04	0.04	0.08	II/d	yes	disinfection	Quarterly

¹Average free chlorine measured in our wholesale customer's distribution systems.

²Average

chlorite measured monthly in our wholesale customer's distribution systems. sites in CCMWA transmission system.

³Samples from

Volatile Organic Chemicals	Quarles WTP mg/L	Wyckoff WTP mg/L	Maximum Limit MCL mg/L	Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Vinyl chloride	Not detected	Not detected	0.002	No EPA Limit	yes	Leaching from PVC pipes; discharge from plastic factories	Annually
1,1-Dichloroethylene	Not detected	Not detected	0.007	No EPA Limit	yes	Discharge from industrial chemical factories	Annually
Dichloromethane	Not detected	Not detected	0.005	No EPA Limit	yes	Discharge from industrial chemical factories	Annually

trans -1,2-Dichloroethylene	Not detected	Not detected	0.1	No EPA Limit	yes	Discharge from industrial chemical	Annually
-					-	factories Discharge from industrial chemical	
<i>cis</i> -1,2-Dichloroethylene	Not detected	Not detected	0.07	No EPA Limit	yes	factories Discharge from metal degreasing sites	Annually
1,1,1-Trichloroethane	Not detected	Not detected	0.02	No EPA Limit	yes	and other factories Discharge from chemical plants and	Annually
Carbon tetrachloride	Not detected	Not detected	0.005	No EPA Limit	yes	other industrial activities Discharge from factories; leaching	Annually
Benzene	Not detected	Not detected	0.005	No EPA Limit	yes	from gas storage tanks and landfills Discharge from industrial chemical	Annually
1,2-Dichloroethane	Not detected	Not detected	0.005	No EPA Limit	yes	factories	Annually
Trichloroethylene	Not detected	Not detected	0.005	No EPA Limit	yes	Discharge from metal degreasing sites and other factories	Annually
1,2-Dichloropropane	Not detected	Not detected	0.005	No EPA Limit	yes	Discharge from industrial chemical factories	Annually
Toluene	Not detected	Not detected	1	No EPA Limit	yes	Discharge from petroleum factories	Annually
1,1,2-Trichloroethane	Not detected	Not detected	0.005	No EPA Limit	yes	Discharge from industrial chemical factories	Annually
Tetrachloroethylene	Not detected	Not detected	0.005	No EPA Limit	yes	Discharge from factories and dry cleaners	Annually
Chlorobenzene	Not detected	Not detected	0.1	No EPA Limit	yes	Discharge from chemical and agricultural chemical factories	Annually
Ethylbenzene	Not detected	Not detected	0.7	No EPA Limit	yes	Discharge from petroleum refineries	Annually
Total Xylenes	Not detected	Not detected	1010	No EPA Limit	yes	Discharge from petroleum factories; discharge from chemical factories	Annually
Styrene	Not detected	Not detected	0.1	No EPA Limit	yes	Discharge from rubber and plastic factories; leaching from landfills	Annually
p-Dichlorobenzene	Not detected	Not detected	0.075	No EPA Limit	yes	Discharge from industrial chemical factories	Annually
o-Dichlorobenzene	Not detected	Not detected	0.6	No EPA Limit	yes	Discharge from industrial chemical factories	Annually
1,2,4-Trichlorobenzene	Not detected	Not detected	0.07	No EPA Limit	yes	Discharge from textile finishing factories	Annually
Dichlorodifluoromethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from landfills	Annually
Chloromethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories; environmental from natural sources	Annually
Bromomethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leaching into groundwater from chemical treatment of soils; dischage from agricultural factories	Annually
Chloroethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
Fluorotrichloromethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite into groundwater, Leachate from agricultural sites	Annually
1,1-Dichloroethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite into surface and groundwater	Annually
2,2-Dichloropropane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leaching into groundwater from chemical treatment of soils into groundwater	Annually
Bromochloromethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Formed naturally by algae in oceans; Byproduct of drinking water disinfection	Annually
Chloroform	0.016	0.0078	No EPA Limit	No EPA Limit	n/a	Byproduct of drinking water disinfection; Regulated under TTHMs	Annually
1,1-Dichloropropene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
Dibromomethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
Bromodichloromethane	0.0035	0.0038	No EPA Limit	No EPA Limit	n/a	Byproduct of drinking water disinfection;	Annually
<i>cis</i> -1,3-Dichloropropene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Regulated under TTHMs Leachate from wastesite into surface and groundwater	Annually
trans -1,3-Dichloropropene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite into surface and groundwater	Annually
1,3-Dichloropropane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from agricultural sites	Annually
Chlorodibromomethane	0.00057	0.001	No EPA Limit	No EPA Limit	n/a	Byproduct of drinking water disinfection; Regulated under TTHMs	Annually
1,2-Dibromoethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite into groundwater; Leaching into groundwater from agrcultural treatment of soils into	Annually
1,1,1,2-Tetrachloroethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	groundwater Leachate from wastesite into	Annually
Bromoform	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	groundwater Byproduct of drinking water disinfection;	Annually
						Regulated under TTHMs Discharge from industrial chemical	
	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	factories Leaching into groundwater from	Annually
1,1,2,2-Tetrachloroethane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	chemical factories Discharge from industrial chemical	Annually
Bromobenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	factories;	Annually
1,2,3-Trichloropropane	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	groundwater	Annually
n-Propylbenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories; Leachate from landfills	Annually

o-Chlorotoluene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
1,3,5-Trimethylbenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite into groundwater	Annually
p-Chlorotoluene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
tert-Butylbenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
1,2,4-Trimethylbenzene	Not detected	Not detected	0.07	No EPA Limit	n/a	Discharge from petroleum factories; discharge from chemical factories	Annually
sec-Butylbenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from landfills	Annually
p-Isopropyltoluene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from petroleum factories	Annually
m-Dichlorobenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
1,2-Dibromo-3-chloropropane	Not detected	Not detected	0.0002	No EPA Limit	yes	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	Annually
Hexachloro-1,3-butadiene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from industrial chemical factories	Annually
Naphthalene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite and from landfills; Discharge from industrial chemical factories	Annually
1,2,3-Trichlorobenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Leachate from wastesite; Discharge from industrial chemical factories	Annually
2-Methoxy-2-methylbenzene	Not detected	Not detected	No EPA Limit	No EPA Limit	n/a	Discharge from chemical factories	Annually

Microbiology Total Coliform and <i>E. coli</i> Plant Finished Water	Quarles WTP mg/L	Wyckoff WTP mg/L	Maximum Limit MCL mg/L	Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Total Coliform	0% positive	0% positive	No more than 5% positive per month	n/a	yes	Coliforms are naturally present in the environment; as well as feces	Daily
E. coli	0% positive	0% positive	0	n/a	yes	<i>E. coli</i> are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Disease-causing microbes (pathogens) in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms. These pathogens may pose a special health risk for infants, young children, and people with severely compromised immune systems.	

The RTCR requires PWSs that have an indication of coliform contamination (e.g., as a result of TC+ samples, E. coli MCL violations, performance failure) to assess the problem and take corrective action. There are two levels of assessments (i.e., Level 1 and Level 2) based on the severity or frequency of the problem.

Special Samples Tested Triennially Lead and Copper 2023	Average Level	90% Level of All Samples	Maximum Limit MCL	Aesthetic Standards SMCL mg/L	EPA Limit Met by CCMWA?	Sources of Contaminant in Drinking Water	Frequency of Test
Lead	0.916 µg/l	1.9 µg/l	TT AL= 15 μg/l	No EPA Limit	yes	Corrosion of household plumbing systems; erosion of natural deposits	Triennielly
Copper	0.032 mg/L	0.054 mg/L	TT AL= 1.3 mg/L	1	yes	Corrosion of household plumbing systems; erosion of natural deposits	Triennielly

Reduced monitoring schedule due to low levels of detection and ability to meet the action levels for both lead and copper.

Special Samp	oles every 9				Aesthetic	EPA Limit		
years	Radionuclides	Quarles WTP	Wyckoff WTP	Maximum Limit	Standards SMCL	Met by	Sources of Contaminant in	Frequency of Test
2018		pCi/L	pCi/L	MCL pCi/L	pCi/L	CCMWA?	Drinking Water	
Gross Alpha parti	cles	n/a	-0.010 (± 0.571)	15	No EPA Limit	yes	Erosion of natural deposits	
Radium 226		n/a	0.397 (± 0.397)	5	No EPA Limit	Voc	Erosion of natural deposits	Every 9 years
Radium 228		n/a	0.319 (± 0.368)	5	NU EPA LIITIIL	yes	Erosion of natural deposits	

Reported values are sometimes negative values. When a sample has little radioactivity, the analytical results should have a normal distribution of positive and negative results around zero. When a sample result is subtracted from that of the system's background and the sample value is less than the background, the result is a negative value. The level of uncertainty is reported as (± a number).

Special Samples every 9				Aesthetic	EPA Limit		
years Radionuclides	Quarles WTP	Wyckoff WTP	Maximum Limit	Standards SMCL	Met by	Sources of Contaminant in	Frequency of Test
2019	pCi/L	pCi/L	MCL pCi/L	pCi/L	CCMWA?	Drinking Water	
Gross Alpha particles	-0.252 (± 0.480)	n/a	15	No EPA Limit	yes	Erosion of natural deposits	

Radium 226	0.434 (± 0.149)	n/a	F	No FPA Limit	1/00	Erosion of natural deposits	Every 9 years
Radium 228	-0.0557 (± 0.3038)	n/a	5	No EPA Limit	yes	Erosion of natural deposits	

Reported values are sometimes negative values. When a sample has little radioactivity, the analytical results should have a normal distribution of positive and negative results around zero. When a sample result is subtracted from that of the system's background and the sample value is less than the background, the result is a negative value. The level of uncertainty is reported as (± a number).

Unregulated Contaminant Monitoring

In addition to testing drinking water for contaminants regulated under the Safe Drinking Water Act, we sometimes also monitor for contaminants that are not regulated. Unregulated contaminants do not have legal limits or MCLs for drinking water.

Cobb County- Marietta Water Authority monitored for PFAS contaminants that are listed in the table below.

Unregulated Contaminants PFAS	Date	Highest Detected Level PPT	Range	Sources of Contaminant in Drinking Water
Perfluorooctanoic acid (PFOA)	2023	2.8	2.8 - 2.1	PFOAs come from a wide range of consumer products, stain- resistant carpet, water-repellent clothes, paper and cardboard packaging, ski wax, and foams used to fight fires. PFOA is also created when other chemicals break down.
Perfluorooctanesulfonic acid (PFOS)	2023	2.4	2.4 - Not Detected	PFOSs can still be found in older consumer products in which it was used before phase-out. PFOA is used in household goods including non-stick coatings like Gore-Tex or cookware (think Teflon), or in carpet and furniture that have been treated to be stain resistant.
Perfluorobutanesulfonic acid (PFBS)	2023	4.2	4.2 - 2.0	PFBS is the replacement chemical for Scotch guard water repellant. It has been used as a surfactant in industrial processes and in water-resistant or stain-resistant coatings on consumer products such as fabrics, carpets, and paper.
Perfluorobutanoic acid (PFBA)	2023	3.9	3.9 - 2.0	PFBA is a breakdown product of other PFAS used in stain- resistent fabrics, paper food packing, and carpets. PFBA was also sused for manufacturing photographic film.
Perfluoropentanoic acid (PFPeA)	2023	3.1	3.1 – 2.5	PFPeA is a shorter chain chemical created as a replacement chemical for PFOAs
Perfluorohexanoic acid (PFHxA)	2023	3.2	3.2 - 2.0	PFHxA is breakdown product of stain- and grease-proof coatings on food packaging and household products.
Perfluoropentanesulfonic acid (PFPeS)	2023	Not Detected	N/A	PFPeS comes from a wide range of consumer products that are coated to provide water-resistance or stain-resistance
Perfluoroheptanesulfoic acid (PFHpS)	2023	Not Detected	N/A	PFHpS comes from a wide range of consumer products that are coated to provide water-resistance or stain-resistance
Perfluorononanesulfonic acid (PFNS)	2023	Not Detected	N/A	PFNS chemicals were used in the production of non-stick, stain repellent and chemically inert coatings
Perfluorodecanesulfonic acid (PFDS)	2023	Not Detected	N/A	PFDS chemicals were used in the production of non-stick, stain repellent and chemically inert coatings
Perfluorododecanesulfonic acid (PFDoS)	2023	Not Detected	N/A	PFDoS created as a replacement chemical for PFOAs used in a wide variety of consumer products
1H,1H,2H,2H-perfluorohexanesulfonic acid (4:2FTS)	2023	Not Detected	N/A	4:2FTS has been used in stain-resistant fabrics, fire-fighting foams, food packaging, and as a surfactant in industrial processes
1H, 1H, 2H, 2H- perfluorooctanesulfonic acid (6:2FTS)	2023	Not Detected	N/A	6:2FTS can functionalize gallium nitride (GaN) to tune the optical properties, which can potentially be used in chemical sensor based applications. It can modify the surface characteristics of
1H, 1H ,2H, 2H- perfluorodecanesulfonic acid (8:2FTS)	2023	Not Detected	N/A	8:2FTS is an aliphatic compound for fluorinated surfactant synthesis. It can modify the surface characteristics of copper substrates that find usage in printed circuit boards as copper foils. It can also be coated on the indium tin oxide substrate, which may be utilized in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs).
Perfluorooctanesulfonamide (PFOSA)	2023	Not Detected	N/A	PFOSA was an ingredient in 3M's former Scotchgard formulation. It was used to repel grease and water in food packaging[3] along with other consumer applications.
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	2023	Not Detected	N/A	NMeFOSA chemicals were used in the production of non-stick, stain repellent and chemically inert coatings
N-ethylperfluoro-1-octanesulfonamide (N-NEtFOSA)	2023	Not Detected	N/A	NEtFOSA is a PreFOS, which is commonly known as sulfluramid (an insecticide used to control cockroaches, termites, and leaf- cutting ants) and surfactants, as well as intermediates in the synthesis of other PFASs.
N- methylperfluorooctanesulfonamidoace tic acid (NMeFOSAA)	2023	Not Detected	N/A	NMeFOSAA chemicals used in many consumer products

N- ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	2023	Not Detected	N/A	NEtFOSAA created as a replacement chemical for PFOAs used in a wide variety of consumer products
2-(N-methylperfluoro-1- octanesulfonami do) ethanol (MeFOSE)	2023	Not Detected	N/A	MeFOSE Alcohol used in many manufacturing applications such as Lithium Ion batteries, apparel, building and construction, coatings, paints and varnishes, wood processing, production of other chemicals and many other uses.
2-(N-ethylperfluoro-1- octanesulfonamide o) ethanol (N EtFOSE)	2023	Not Detected	N/A	N EtFOSE created as a replacement chemical for PFOAs used in a wide variety of consumer products such as fire-fighting apparel and water-repellent clothes
Perfluoro-3-methoxypropanoic acid (PFMOPrA)	2023	Not Detected	N/A	PFMOPrA created as a replacement chemical for PFOS used in a wide variety of consumer products
Perfluoro(4-methoxybutanoic acid) (PFMBA)	2023	Not Detected	N/A	PFMBA is in a variety of consumer products
Perfluoro-3,6-dioxaheptanoic acid	2023	Not Detected	N/A	Perfluoro-3,6-dioxaheptanoic acid is in a variety of consumer products
9-Chlorohexadecafluoro-3-oxanonane- 1-sulfonic acid (9CL-PF3ONS)	2023	Not Detected	N/A	9CI-PF3ONS or F53B created as a replacement chemical for PFOAs and PFOS used in a wide variety of consumer products
11-Chloroeicosafluoro-3-oxaundecane 1-sulfonic acid (11CL-PF3OUdS)	2023	Not Deteced	N/A	11CI-PF3OUdS created as a replacement chemical for PFOAs and PFOS used in a wide variety of consumer products
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	2023	Not detected	N/A	PFEESA is a specialty chemical used in various industries, including electronics, aerospace, and product surface treatment.
2H,2H,3H,3H-Perfluorohexanoic acid (3:3 FTCA)	2023	Not Detected	N/A	3:3 FTCA is a shorter chain chemical created as a replacement chemical for PFOA and PFOSs
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	2023	Not Detected	N/A	5:3 FTCA is a shorter chain chemical created as a replacement chemical for PFOA and PFOSs
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	2023	Not Detected	N/A	7:3 FTCA is a shorter chain chemical created as a replacement chemical for PFOA and PFOSs
Perfluoropentanesulfonic acid (PFPeS)	2023	Not Detected	N/A	PFPeS comes from a wide range of consumer products that are coated to provide water-resistance or stain-resistance
Perfluoroheptanoic acid (PFHpA)	2023	Not Detected	N/A	Breakdown product of stain- and grease-proof coatings on food packaging, couches, carpets. A 7-carbon version of PFOA
Perfluorohexanesulfonic acid (PFHxS)	2023	Not Detected		Sources include firefighting foams, textile coating, metal plating and in polishing agents
Perfluorononanoic acid (PFNA)	2023	Not Detected		PFNA is used as surfactant for the production of the fluoropolymer polyvinylidene fluoride
Perfluorodecanoic acid (PFDA)	2023	Not Detected		PFDA is a fluorosurfactant and has been used in industry, with applications as wetting agent and flame retardant.
Perfluorododecanoic acid (PFDoA)	2023	Not Detected		PFDoA is a product of stain- and grease-proof coatings on food packaging, soft furnishings and carpets.
Perfluorotridecanoic acid (PFTrDA)	2023	Not Detected		PFTrDA is a product of stain- and grease-proof coatings on food packaging, soft furnishings and carpets
Perfluoroundecanoic acid (PFUnA)	2023	Not Detected		PFUnA is a product of stain- and grease-proof coatings on food packaging, soft furnishings and carpets.
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA/GenX)	2023	Not Detected		HFPO-DA/GenX Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.
4,8-dioxia-3H-perflourononanoic acid (ADONA)	2023	Not Detected		Sources include food packaging, paints, cleaning products, non- stick coatings, outdoor fabrics and firefighting foam.
Perfluorotetradecanoic acid (PFTeDA)	2023	Not Detected		Sources include food packaging, paints, cleaning products, non- stick coatings, outdoor fabrics and firefighting foam.

Definitions and Terms

Action Level (AL)	The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.					
Maximum Contaminant Level (MCL)	The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology. These are enforcible standards.					
Secondary MCL (SMCL)	A nonenforceable numerical limit set by the USEPA for a contaminant on the basis of aesthetic effects to prevent an undesirable taste, odor, or appearance.					
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non- enforceable public health goals.					
N/A	Not Applicable					
NTU	Nephelometric Turbidity Unit (a measure of particles held in suspension in water.)					
Parts per Million (ppm) or Milligrams per Liter (mg/L)	Are units of measurement for concentration of a contaminant. A part per million corresponds to one second in roughly 11.5 days.					

Grains per Gallon (gpg)	A non-metric unit of measurement for hardness used in North America.					
The ">" symbol	This symbol means "greater than."					
The "<" symbol	This symbol means "less than." For example, a result of < 5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.					
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water. For Total Organic Carbon (TOC) the level must be above 1. For turbidity the level must be under 0.3 NTU 95% of the time, and always < 1 NTU. Lead and copper are regulated by a treatment technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.					
Turbidity	A measurement of the cloudiness of the water. We monitor turbidity because it is a good indication of water quality and the effectiveness of our treatment process.					
Reporting Limit (RL)	Defined as the smallest concentration of a chemical that can be reported by a laboratory.					
RTCR	Revised Total Coliform Rule					
Inorganic Chemicals (IOCs)	Consist of salts and metals, which may be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.					
Volatile Organic Compounds (VOCs)	Volatile Organic Compounds include both regulated and unregulated compounds which are listed in the National Primary Drinking Water Regulations.					
Picocuries per liter (pCi/L)	A unit for measuring radioactive concentrations.					
ССМЖА	Cobb County-Marietta Water Authority- is a regional public utility that provides potable (drinking and fire protection) water on a wholesale basis to 11 retail water suppliers, one industrial customer and one institutional customer.					